Seit Ende des Jahres 2020 laufen die Versuchsreihen für das Forschungsprojekt DarWIN. Ziel des KI-Projekts ist es, detaillierte Verhaltensmodelle von Spritzgießmaschinen auf hochfrequenten Maschinendaten zu lernen. Dafür werden Maschinen unterschiedlicher Hersteller herangezogen, die im Laufe der Zeit ähnliche Teile produzieren. Auf diese Weise sollen die auf einer Maschine gelernten Verhaltensmodelle auch auf andere Maschinen übertragbar sein, ohne die Modelle für jede Maschine wieder komplett neu zu lernen. Die Verhaltensmodelle schlagen optimierte Prozessparameter für den nächsten Schuss vor, um bei minimal möglicher Zykluszeit ohne Ausschuss zu produzieren.
Spritzgießmaschinen und –Prozesse miteinander vergleichen – herstellerunabhängig
Die Expert*innen von SKZ und plus10 erforschen anwendungsnah neueste Machine Learning Modelle zur Verhaltensbeschreibung von zyklischen Fertigungsprozessen am Beispiel des Spritzgießens. Im Zentrum steht die Online-Fähigkeit, also die Bildung und Erweiterung eines Modells, während der Prozess läuft. Daneben spielt auch die Untersuchung der Übertragbarkeit von vortrainierten Machine Learning Modellen von einer Maschine auf ähnliche, nicht identische Maschinen eine zentrale Rolle.
Ein „Evolutionslerner“ des Unternehmens plus10 generiert Optimierungsvorschläge basierend auf dem Verhaltensvergleich mit allen beteiligten gleichen bzw. ähnlichen Maschinen. Das SKZ stellt für die Versuchsreihen eine große Maschinenvielfalt der Hersteller ARBURG, ENGEL, KraussMaffei, Sumitomo (SHI) Demag sowie WITTMANN BATTENFELD zur Verfügung.
Von plus10 fließt die Expertise zur intelligenten Datenverarbeitung und automatisierten Produktionsoptimierung mittels kontinuierlich lernender Modelle in das Projekt ein. Die Spritzgieß-Spezialist*innen beurteilen die übertragenen Optimierungsvorschläge und kontrollieren die Bauteilqualität im Prüflabor.
Das Forschungsprojekt „DarWIN“ (BMBF-Förderkennzeichen 01IS20066) wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und endet voraussichtlich im November 2021. Für Ende des Jahres ist die Veröffentlichung der finalen Ergebnisse geplant.